Home » » Solving a Linear Systes of Equations Using python

Solving a Linear Systes of Equations Using python

Posted by All Tutor Flashing Rom on Friday, October 25, 2013

Solving linear systems of equations is straightforward using the scipy command linalg.solve. This command expects an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a symmetrix matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired to solve the following simultaneous equations:
\begin{eqnarray*} x+3y+5z & = & 10\\ 2x+5y+z & = & 8\\ 2x+3y+8z & = & 3\end{eqnarray*}
We could find the solution vector using a matrix inverse:
\[ \left[\begin{array}{c} x\\ y\\ z\end{array}\right]=\left[\begin{array}{ccc} 1 & 3 & 5\\ 2 & 5 & 1\\ 2 & 3 & 8\end{array}\right]^{-1}\left[\begin{array}{c} 10\\ 8\\ 3\end{array}\right]=\frac{1}{25}\left[\begin{array}{c} -232\\ 129\\ 19\end{array}\right]=\left[\begin{array}{c} -9.28\\ 5.16\\ 0.76\end{array}\right].\]
However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it however gives the same answer as shown in the following example:
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],
[3, 4]])
>>> b = np.array([[5],[6]])
>>> b
array([[5],
[6]])
>>> linalg.inv(A).dot(b) #slow
array([[-4. ],
[ 4.5]]
>>> A.dot(linalg.inv(A).dot(b))-b #check
array([[ 8.88178420e-16],
[ 2.66453526e-15]])
>>> np.linalg.solve(A,b) #fast
array([[-4. ],
[ 4.5]])
>>> A.dot(np.linalg.solve(A,b))-b #check
array([[ 0.],
[ 0.]])

0 comments:

Post a Comment

Popular Posts

Powered by Blogger.
.comment-content a {display: none;}